Midterm 1 - Review - Problems

Peyam Ryan Tabrizian

Tuesday, Feburary 19th, 2013

Problem 1:

(1.9) Prove that the union of two subspaces of V is a subspace of V if and only if one of them is contained in the other.

Problem 2:

Find a vector space V and three subspaces U_{1}, U_{2}, U_{3} of V such that:
(1) $V=U_{1}+U_{2}+U_{3}$
(2) $U_{1} \cap U_{2}=\{\mathbf{0}\}, U_{1} \cap U_{3}=\{\mathbf{0}\}, U_{2} \cap U_{3}=\{\mathbf{0}\}$
(3) BUT $V \neq U_{1} \oplus U_{2} \oplus U_{3}$

Hint: Let $V=\mathbb{R}^{3}$. If you really want to see the solution, it's on page 16 of the book!

Problem 3:

(2.10) Suppose $\operatorname{dim}(V)=n$. Prove that there are 1 -dimensional subspaces U_{1}, \cdots, U_{n} of V such that $V=U_{1} \oplus \cdots \oplus U_{n}$

Problem 4:

((2.17), with $m=2)$ Suppose V is finite-dimensional and $V=U \oplus W$. Show that $\operatorname{dim}(V)=\operatorname{dim}(U)+\operatorname{dim}(W)$

Problem 5:

Prove or give a counterexample: If U_{1}, U_{2}, U_{3} are subspaces of V, then:

$$
\left(U_{1}+U_{2}\right) \cap U_{3}=\left(U_{1} \cap U_{3}\right)+\left(U_{2} \cap U_{3}\right)
$$

